Semilinear p-evolution equations in Sobolev spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controllability of Semilinear Stochastic Delay Evolution Equations in Hilbert Spaces

The controllability of semilinear stochastic delay evolution equations is studied by using a stochastic version of the well-known Banach fixed point theorem and semigroup theory. An application to stochastic partial differential equations is given. 1. Introduction. The fixed point technique is widely used as a tool to study the controllability of nonlinear systems in finite-and infinite-dimensi...

متن کامل

Existence of solutions in weighted Sobolev spaces for some degenerate semilinear elliptic equations

We prove an existence result for the Dirichlet problem associated to some degenerate quasilinear elliptic equations in a bounded open set Ω in R in the setting of weighted Sobolev spaces W 1,p 0 (Ω, ω). 2000 Mathematics Subject Classification: 35J70, 35J60.

متن کامل

Non-regularity in Hölder and Sobolev spaces of solutions to the semilinear heat and Schrödinger equations

In this paper we study the Cauchy problem for the semilinear heat and Schrödinger equations, with the nonlinear term f(u) = λ|u|αu. We show that low regularity of f (i.e., α > 0 but small) limits the regularity of any possible solution for a certain class of smooth initial data. We employ two different methods, which yield two different types of results. On the one hand, we consider the semilin...

متن کامل

Sobolev Spaces and Elliptic Equations

Lipschitz domains. Our presentations here will almost exclusively be for bounded Lipschitz domains. Roughly speaking, a domain (a connected open set) Ω ⊂ R is called a Lipschitz domain if its boundary ∂Ω can be locally represented by Lipschitz continuous function; namely for any x ∈ ∂Ω, there exists a neighborhood of x, G ⊂ R, such that G ∩ ∂Ω is the graph of a Lipschitz continuous function und...

متن کامل

Semilinear Poisson problems in Sobolev-Besov spaces on Lipschitz domains

Extending recent work for the linear Poisson problem for the Laplacian in the framework of Sobolev-Besov spaces on Lipschitz domains by Jerison and Kenig [16], Fabes, Mendez and Mitrea [9], and Mitrea and Taylor [30], here we take up the task of developing a similar sharp theory for semilinear problems of the type ∆u − N(x, u) = F (x), equipped with Dirichlet and Neumann boundary conditions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2016

ISSN: 0022-0396

DOI: 10.1016/j.jde.2016.01.035